1. INTRODUCTION TO
GROUPS

§1.1. Group Theory: The Door to

Abstract Mathematics

So you’ve decided to study group theory! Whether
or not you made a free choice, or whether it just happens
to be part of a course you have to study, is immaterial.
The important thing is that you’re properly introduced to
the subject and that you develop an overview into which
you can retreat whenever you get lost in the details.

| could begin this introduction by telling you what
a group is. In fact | will. Whether you’ll be any the wiser
remains to be seen!

A GROUP (G, =) is a set G together with
a binary operation = which is associative,

has an identity and has inverses for all its
elements.

There now. You know what a group is. All of
group theory is built on that one brief statement. Yet it’s
likely that you don’t feel very comfortable about groups
at this stage. Numbers have been your friends for as long
as you’ve known any mathematics and, more recently,
you’ve learnt to deal with mathematical objects like
functions, matrices and vectors. But groups are sets
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whose elements aren’t specified. Are they numbers?
Possibly. Are they matrices? They might be. It all sounds
a bit vague and abstract.

Of course once you’ve been given some examples
you’ll feel a little happier. But before we do that it would
be helpful if we talked about the nature of abstraction.
One thing you’ll soon discover is that groups are
essentially abstract entities.

The word ‘abstract’ usually conveys the idea of
something that’s abstruse,
vague and very difficult. In
fact it’s more accurate to
associate ‘abstract’ with words
such as ‘powerful’, ‘virtual’,
and even ‘beautiful’.

The ability to handle
abstraction is possibly the
greatest thing that sets humans
apart from other creatures. Language is a system whereby
concrete experiences are abstracted and are represented
by sounds or squiggles. Numbers may seem to be very
concrete but a moment’s reflection will show you how
sophisticated and abstract they are. Once we move
beyond ‘two apples’ or ‘two monkeys’ to just ‘two’ we’ve
come a long way in the process of abstraction. And all
that before the age of five!
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All areas of knowledge involve ever deeper levels
of abstraction. Our modern world is becoming
increasingly abstract. Money can be electronic. Reality
can be virtual. Atomic particles are now considered to
behave more like waves than little billiard balls.

What is the real ‘stuff’ of mathematics — the
fundamental objects of study? For most of your
mathematical life you would have said ‘numbers’. Of
course ‘number’ has meant different things to you at
different times — from ‘things you count with’, to
‘positions on the number line’ and finally to ‘elements of
the field of complex numbers’. But all this time you lived
within this system of complex numbers and you explored
every far corner.

The system of complex numbers is by far the most
important mathematical system of all, but it’s still only
one system. More recently you’ve encountered other
systems — systems of matrices, systems of polynomials
and so on. In abstract algebra we don’t just study further
examples of algebraic systems but rather we study
algebraic systems themselves.

In group theory we restrict our attention to systems
with just one binary operation satisfying certain key
properties. A binary operation = on a set S is a function
from S x Sto S, or more informally, it’s an operation that
combines any (ordered) pair of elements a, b € S to
produce an elementaxb e S.
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Other branches of abstract algebra, such as ring
theory, consider systems with two or more operations but
in group theory we see how far we can get with just one.
After all, if we have a system with two binary operations,
we can always close one eye and focus on one operation
at a time.

But why do we insist that they possess certain
properties? Surely if we make no conditions our theory
would be more general. That’s true, but the trouble is that
too much generality can lead to shallowness. A rich
theory depends on having just the right amount. And, as
the mathematicians who shaped group theory discovered,
there are four properties which lead to a theory which, on
the one hand is very rich and beautiful, and on the other,
is very useful and applicable.

These four properties are called the ‘group
axioms’. But don’t think of these axioms as somehow
self-evident truths in the way that many people think of
the axioms of geometry. They’re simply four properties
that a system with a single binary operation must possess
before it’s allowed to be called a ‘group’.

There was a time when groups were more concrete.
When Evariste Galois invented the concept of a group, in
the early 1800s, groups consisted of permutations (or
‘substitutions’) of the zeros of a polynomial. Then it was
realized that most of the theory doesn’t need to assume
anything about the nature of the things being permuted.
Here was the first level of abstraction. Groups became
sets of permutations of ‘things’.
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Then, towards the end of the nineteenth century,
group theorists began to realise that a considerable
portion of that theory, by now well developed, could be
built up from just four basic facts about permutations. So
the theory will apply to any other algebraic system that
satisfies those properties. No longer do the elements have
to be permutations, although an important branch of
group theory has to do with permutation groups.

What are these four axioms? The first, closure, is
really implicit in the concept of a binary operation. You’ll
notice that we didn’t explicitly refer to it in our brief
definition above. It simply insists that the result of
combining two elements of a group should again be in the

group.

CLOSURE:a*b e Gforalla, b e G.

Here we’re using = to refer to the binary operation

and, of course, € denotes set membership. Without
closure we wouldn’t be able to consider an expression like
(a = b) = ¢ because if a = b lies outside of G the result of

combining it with ¢ wouldn’t be defined.

If the operation had been ordinary addition or
multiplication of numbers we’d normally remove the
parentheses here. The expression a + b + cC is
unambiguous because both ways of interpreting it have
the same value. That is, (a + b) + ¢ = a + (b + c). Addition
and multiplication of numbers and polynomials and
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matrices are associative — but not every useful operation
in mathematics is. For example (a — b) — ¢ is not the same
as a — (b — ¢) and so subtraction isn’t associative. The
vector product u x v for R® is also a useful operation that
fails to be associative.

Nevertheless we’ll insist on the associative law
before a system can be awarded the title ‘group’. One
fortunate result of this is that it allows us to have
unambiguous powers. We’ll denote an expression a * a *
a = .. = a, with n factors, as a" by analogy with

multiplication of numbers. Without the associative law
this would be highly ambiguous.
For example does a* mean ((a = a) = a) = a or

perhaps (a = a) = (a = a) or maybe it could be (a = (a *
a)) ~aorcoulditmean a= ((a*~a)*a)orevenax*(a=*
(a = a))? Without the associative law these might
represent 5 different elements!

ASSOCIATIVITY:
(@xb)xc=ax(bxc)foralla, b,c eG.

In ordinary algebra we’re usually able to reverse
the fundamental operations. Addition can be reversed by
subtraction and multiplication by a non-zero number can
be reversed by division. We can do these things because
of inverses such as —x and 1/x. Inverses are vital to group
theory and so we build them into the axioms. But before
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we can even talk about inverses we must have an identity
element.

IDENTITY: There exists e € G such that:
exa=-a=a=*eforalla e G.

You’re used to writing the identity as 0 or 1 but for
the moment we will use the neutral symbol e for the
identity to avoid confusion. This is because you can have
groups of numbers with some strange binary operation,
neither addition nor multiplication, where the identity is
neither O nor 1.

INVERSES: For all a € G there exists b € G such that
a*b=e=b=x*a.

With groups of numbers under addition (this just
means we’re focussing on addition as our operation) the
identity is 0. In other groups it’s the zero matrix or the
zero vector. With groups of numbers under multiplication
the identity is 1 and with matrix groups under matrix
multiplication the identity is the identity matrix I.

With groups of numbers under addition the inverse
of x is —x. Under multiplication it’s X or 1/x.

But not every real number has an inverse under
multiplication. The number zero doesn’t have one. All
this means is that when talking about the real numbers
under multiplication we must exclude zero if we want to
make a group. The system of all real numbers is a group
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under addition. The system of all non-zero real numbers
IS a group under multiplication.

Let’s assemble all these axioms in one place to give
a more explicit definition of a group.

A group (G, =) is a set G together with a binary operation
* such that the following hold:

CLOSURE LAW:axb e Gforalla,b e G.
ASSOCIATIVE LAW:
(@axb)xc=ax(bxc)foralla,b,ceG.
IDENTITY LAW: There exists e € G such that
exa=-a=axeforallaeG.

INVERSE LAW: For all a € G there exists b € G such
thataxb=e=b=*a.

Notice that we don’t assume the Commutative
Law: a = b =b = a for all a, b. An abelian group (hamed

after the Norwegian mathematician Abel) is a group in
which the following holds:

COMMUTATIVE LAW:axb=b=xaforalla, b € G.

It’s clear that you’ve been on close terms with
groups most of your mathematical life. The first
mathematical system you met was the system of counting
numbers. Because you didn’t know about negative
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numbers at that stage you would have to wait to meet your
first group. Probably the first group you ever met was the
group of positive rational numbers (fractions) where the
operation is multiplication. The axioms were never
mentioned in primary school, but you knew that when you
multiplied two fractions you always got a fraction.

2 1 3 :
Because products such as 3 x3x; were written

without parentheses it probably never occurred to you that
potentially you might have obtained a different answer if

you’d multiplied % by% first rather than % by% . The fact

that you didn’t, and that it produced % however you did

it, reinforced your instinctive acceptance of the
associative law. And the ‘invert and multiply rule’
assured you that inverses always exist.

The next group that you encountered was probably
the group of integers under addition as you learnt about
negative numbers. Then, as you extended your
mathematical horizons you encountered many other
groups of numbers.

But groups needn’t consist of numbers. There are
groups of matrices and groups of functions. In fact, to
emphasize the wonderfully abstract nature (i.e.
generality) of the group concept, here’s an example of a
group where the elements appear to be as non-
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mathematical as you could imagine. They’re different
ways of turning a mattress!

§1.2. The Dutch Wife’s Mattress Problem

For centuries Dutch wives have been renowned for

being very clean and very T
methodical and one of their basic

household chores was turning over l‘)g'll%};
the mattresses every month to WIFE,

promote even wear. This problem v
concerns the best way to do it.
These days households are too busy ‘
to be bothered doing this and this —_—
monthly ritual has largely disappeared along with the
chores of ironing tea-towels or darning socks. But even if
it is a problem that no longer has a practical significance
it will help us to understand the concept of a group.

| should point out that although | have called it the
Dutch Wife’s Problem I don’t mean to imply that doing
housework is only woman’s work. | got taken to task by
one of my readers who resented this implication. The only
reason why I call it “The Dutch Wife’s Mattress Problem”
IS because my wife, now keeping Heaven
clean and tidy, was Dutch and | used to
have to help her with rotating the "
mattress.

The easiest rotation to perform is
the one where you turn the mattress over,
left to right when you stand at the foot of the bed.

24



It's easy to turn your mattress properly!
Turn it over and end -to- end.

while your -
mattress is lying flat.®

2.

Position
mattress
across  §
bedso it
hangs over
a foot or more.

.........
......

TURNING A MATTRESS IS A JOB FOR TWO PEOPLE
Don't risk damage to the mattress or personal injury by deing it yourself.

But if you did this every time, the head end would

never change with the foot. So it’s necessary sometimes
for the two of you to pick up the mattress and walk around

the bed, rotating the mattress head to foot.

But a Dutch wife is very thorough. She knows that

there’s a third rotation that can be performed. This
involves lifting up the head end so that the mattress
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becomes vertical (perhaps narrowly missing the ceiling
light) and then bringing it down so that it’s now at the foot
of the bed. The mattress is now upside down relative to
the way it was, with head and foot reversed.

The Dutch Wife’s Problem is to devise a mattress-
turning regime so that the mattress wears uniformly. One
could use all three rotations in turn but, as we’ll see, this
doesn’t achieve even wear.

There are three basic mattress turns. The simplest,
turning the mattress over, along its longer axis, we shall
call A. Turning it head to
foot, while keeping the A
mattress level, we shall call e 1)
B. The one that nearly
knocks out the light fitting, ./)C
we’ll call C. >

The system mentioned above involves a three-
monthly cycle such as:

A B CABC,..

Now there are two things wrong with such a plan.

(1) It’s not necessary to do a C. You can achieve the same
result as a C without risking the ceiling light, simply by
doing A followed by B.

(2) More importantly it doesn’t achieve what it sets out to
do (ensuring that the mattress wears evenly) because at
the end of each three-month period the mattress is back
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the way it was. Since there are four possible positions,
one position gets missed out completely and it’s the same
one each time! One side of the mattress will get two
months wear to every month on the other side. To see this
clearly I’ve marked one corner of the mattress.

JAN FEB MAR APR
e A® /Bl o Cu

<~ 3MONTHCYCLE —

So what should all good mattress turners do?
Simply leave out the most difficult rotation, C, and adopt
the pattern: A, B, A, B, ...

Just because C is possible doesn’t mean we should
use it. But won’t this mean that things will repeat after
only two months? Not at all. The above regime will cause
the mattress to go through all four positions once before
repeating. We achieve our goal of even wear.

JAN FEB MAR APR MAY

° A B o A B e

< EVEN WEAR OVER 4 MONTHS —
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The group here has four elements, each of which is
a way of turning the mattress. “Four?” you say, “A, B, C
—what’s the fourth?”. The fourth is I which is the identity
operation that does nothing. It’s the operation that less
conscientious people use — those who can’t be bothered
turning the mattress at all. Although it sounds trivial the
identity operation is as important to our little group as the
number 1 is to arithmetic.

So our group contains four things, or as we shall
say, we have a group of “order 4. The elements of our
little mattress group are I, A, B and C and the operation is
to follow one rotation by another — finding a single
rotation which would have achieved the same result. By
experimenting with a real mattress, or better still with a
paper model, or even better still by simulating a rectangle
in our imagination, we conclude that A followed by B
achieves the same result as C which we express as

AxB=C.

And A followed by A again reverts the mattress
back to the way it was. Two A’s in succession is
equivalent to doing nothing, that is

AxA=]

which we can express more simply as A2 = |I.
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That’s not to say that A followed by another A is
equivalent in all respects to 1. There’s a lot less effort
involved in doing | thanin A2 So we’re losing some
information here. But in terms of where things are at the
end of it all, A? is the same as I.

Since there’s no danger of confusion we can omit
the = and simply write these equations as AB = C and A2
= I. This notation makes it look very much like ordinary
algebra, but we must be a little careful. The second
equation tempts us to conclude that A = = 1. But this is
nonsense. There’s no such thing as —I in our mattress
group. You mustn’t expect the algebra of a group to
always behave like ordinary algebra, the algebra of
numbers. To some extent you’ll have to learn algebra all
over again in this new context.

We can summarize our little algebraic system by
means of a group table:

WO—(>|>
>|—|O|m|m
—|> OO

I
I
A
B
C

Om> —

If X represents one of the ‘numbers’ in our little
group then the equation x2 = I has four solutions. But who
ever heard of a quadratic equation having more than two
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solutions? Of course it can’t happen in ordinary algebra.
But we’re now beginning to realise that the algebra we
learnt at school doesn’t apply universally. It applies to the
system of real numbers and it applies to the system of
complex numbers. In fact the core of high-school algebra
(provided you leave out the inequalities) works for any
system that satisfies the field axioms. But groups aren’t
fields and the algebra of groups can be a little more
dangerous than the algebra of a field. Of course, danger
spells excitement!

§1.3. The Dihedral Group of Order 8.

In the above discussion we
assumed that the mattress was
rectangular. A heart-shaped mattress
would be more exotic but it would
rule out rotating head to foot. The
group in this case would contain only
the 180° rotation about the axis of
symmetry, and of course the identity.

A circular mattress has a very high degree of
symmetry and its group would be infinite! In principle we
could rotate the mattress through any angle or turn it over
around any one of the infinitely many axes of symmetry.

But let’s go for a shape that has a little more
symmetry than the rectangle, but not as much as the circle.
Let’s imagine a square mattress. In fact we can drop the
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references to beds and mattresses because what’s going
on here is pure geometry.

Let’s imagine a square, or better still, let’s cut out
a little square from cardboard and label the corners 1, 2,
3, 4 in order. Also write the word RESET in the middle

1 2

RESET

4 3

Now turn the paper over and label the corners on
the other side. You must ensure that this labelling is
consistent with the first, so that corner 1 is corner 1 no
matter which side of the paper you are looking at, and so
on. Don’t write the word RESET on this side.

2 1

3 4

Now whenever | say RESET rotate your square,
turning it over if necessary, so that you can read the word
RESET the right way up. This is the reset position.

1 2

RESET

4 3
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The rotation group of the square consists of all
rotations which, at the end, leave the square occupying
the same space as at the beginning (ignoring the labels).

A square has four axes of symmetry, vertical,
horizontal and both diagonals. All four axes pass through
the centre. If you flip the square about one of these axes
the square will appear to be the same, although the labels
will be different. These four 180° rotations belong to the
rotation group. In addition there are rotations in the plane
of the square, about the centre, through 90°, 180°, 270°
and, not forgetting the identity, 0°. This gives us a group
of order 8 (that is, 8 elements).

Let A denote the positive N

(anti-clockwise) 90° rotation about B
the centre. Then A? is the 180° ™A
rotation and A3 is the 270° anti- O
clockwise rotation (or equivalently

a clockwise 90° rotation). Let B AN
denote the 180° rotation about the

horizontal axis. One can easily verify that the 180°
rotation about the vertical axis is A’B and that AB and
A3B are the 180° rotations about the two diagonals.

The rotation group of the square is thus

{lI, A, A%, A B, AB, A%B, A°B}
and its group table is:
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A A2 A* B AB AB AB

|
I |1 A | A2 A°| B | AB |AB|A°B
Al A | A2 A | |AB |A°B|A°B| B
Azl A2 | A I A |AB|AB| B | AB
Al A3 | A | A2|AB| B | AB | AB
Bl B |[AB|AB| AB| | Al A2 A
AB|AB | B [AB|AB]| A I A3 | A?
AB|AB|AB| B [AB|] A2 | A I Al
AB|ABIAB|AB| B | A A2| A I

All of these can be verified using your little square.
For example, reset the square to its initial position and
perform operation AB, that is, A followed by B. Note
down the positions of the 4 corners. Now reset the square
again and perform operation A%, This is A done 3 times.
You should see that the positions of the corners are as
before. So you will see that AB times A® is A’B

Notice from the table that BA = AB. You can
verify this using your square if you wish. But A>= A" (a
270° rotation clockwise is the same as a 90° rotation anti-
clockwise) so BA = A3B = A1B.

Notice that this is different to AB, showing that AB
# BA. The commutative law breaks down in this group.
This lack of commutativity is something that never occurs
with numbers. But then there’s no reason why rotations
should behave like numbers. In general binary operations
don’t obey the commutative law. Numbers are the
exception — rotations follow the general rule of not
commuting.
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Even in life things are usually non-commutative. It
usually does matter in which order you do things. For
example if

O = open the door and W = walk through the door

then OW (open the door and then walk through) is usually
less painful than WO. And, especially in previous
generations, many lives have been complicated by the
lack of the commutative law when

M = get married and B = have a baby!

Once again we’re reminded that we must learn
algebra all over again. In many ways the algebra of groups
is simpler than the algebra of numbers because we only
have one operation. But in other ways it’s more
complicated. We’re so used to using the commutative law
for numbers that we wouldn’t hesitate to cancel the X and
x~1 in the expression xlyx and, for numbers, that would
be perfectly justified. On the other hand, in a non-
commutative group this remote cancellation would not be
justified and it could very well happen that xyx is quite
different to y. Certainly we can cancel an x with its
inverse, but only if they are adjacent.

Although there are eight elements in this group
we’ve managed to express them all in terms of just A and
B. We call these generators for the group. There are
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many relations that hold between these generators but all
of them can be deduced from just these three:
A‘=1, B?=1, BA=A'B
So we can summarise this group by writing it as
(A,B|A*=1,B2=1,BA=A"'B).

We call this a presentation for G and read this as
“the group generated by A and B such that A* = 1, etc”.
(When we write a presentation we usually use the symbol
1 for the identity.)

This presentation is a very compact way of
describing the group because the entire group table can be
deduced from it. Notice that the relation BA = A™'B can
be regarded as the rule: moving a B past an A inverts the
A. (But don’t treat this as a universal rule of group theory.
It just applies whenever we have BA = A1B.)

Using this rule, together with the other relations,
we can verify every product in the group table without the
need to rotate an actual square. For example:

(A’B)(A3B) = A%(BA®)B
= A’2(A—°B)B
= (A’A%)(BB)
=A1=A3

Where we represent a group in terms of generators
and relations we call it a presentation. We list the
generators to the left of the bar and the relations to the
right. Sometimes the relations are equations. But if the
right hand side of the equation is the identity we leave this
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out and call the left hand side a relator. So in a
presentation we can use a mixture of relations and
relators.
For the rotation group of the square we could write
the presentation more simply as
(A, B| A% B?, BA=A"B).
We could even change the equation BA = A™1B into the
relator B”XABA because BA = A™1B can be rewritten as
BABA = 1. However it is more convenient to leave it
as BA = A~!B because it provides a recipe for moving a
B past an A.
This group is called the dihedral group of order 8.
More generally we define the dihedral group of order
2n, for any positive integer n, as
D2n = (A", B2, BA = A'B).
It gets the name ‘dihedral’ (literally ‘two faces’) from
the fact that it’s the rotation group of an n-sided regular

polygon.

Representing a group in terms of generators and
relations is not a new concept, but it has becoming
increasingly important over the last few years and it’s a
further level of abstraction in group theory. All the
information needed to compute in this group is inherent
in the relations. Many groups that arise in applications
come in this form. A huge amount of recent work has
gone into extracting the properties of a group from such a
presentation. More of this later.
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For now, let’s get back to the dihedral group of
order 8. It’s just one of the infinitely many groups that
exist, but it’s one that keeps popping up in applications.
We met it as the rotation group of the square but in the
next three sections we’ll find it arising in the context of
mail sorting, the kinship rules of a certain tribe of First
Nation People in Australia and the basis for a children’s
party game.

“But that’s not mathematics!” you may be thinking.
Hopefully, as a result of learning some group theory,
you’ll have a better appreciation of what mathematics is.
It’s not just about counting or measurement. It’s also
about patterns and rules and structure.

§1.4. Groups and Mail Sorting

These days letters are sorted by machine. The
postage stamp is, or should be, in the top right-hand
corner but most letters will come into the sorting machine
upside-down or back-to-front. So the machine has to
orient all the letters in the same way.

Suppose the letters are coming in on a conveyor
belt in all possible orientations. We can have a detector,
which scans the top right-hand corner for a stamp. Those
envelopes whose stamp is detected are sent off for further
processing and the rest are rotated in some way.

—D—— — S —> —>
El\xwwxwww

NN
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From here they pass to another detector, and so on.
In this way a given letter can be flipped over and rotated
until a stamp is detected. And any letter, for which no
stamp can be found, goes off to another place.

Even though most letters are rectangular rather than
square the possible flips and rotations will all be elements
of the rotation group of a square — the dihedral group of
order 8.

Two operations that are widely used in mail sorting
machines are R = a 90° anti-clockwise rotation and H = a
horizontal flip (top to bottom). These are the two
generators A and B of the dihedral group under different
names. Although, in theory, a left-to-right flip could be
used, it’s only in recent years that such flips have been
possible at high speed. And flips about a diagonal seem to
be quite impractical to implement.

Now it’s obvious that a system involving eight
detectors and seven flip/rotation operations is necessary.
(We don’t need a machine to produce the identity
rotation!) And since it’s reasonable to want to minimize
the number of operations, we should limit ourselves to
just seven. But not every sequence of 7 H’s and R’s will
achieve the desired result of putting a letter through all 8
possible orientations.

Obviously it would be no good having two
successive H’s or four R’s in a row. And while it might
have been patriotic for the British Post Office to start the
sequence with HRH, the next step would be forced to
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repeat an orientation that has already occurred. This is
because HRH is equivalent to R® and so if the next
operation was R the letter would repeat its original
orientation while if it was H we would repeat the
orientation we had two steps before.

IT sameR Iln ] Il R/ —_I:|
4N

—_ [ —@| — -
|— same " Iln

Less obviously, the sequence RRHRRHR will not
do because it repeats two orientations while missing out
two others. (Check this yourself.)

A letter-facing sequence that is actually used is
RRRHRRR. (Check that this achieves all eight
orientations.) The sequence RRHRRRH is also used.

Mathematically these are equally good solutions to
the problem. But according to Post Office engineers [G.P.
Copping: Automatic Letter Facing, British Postal
Engineering, Proceedings of the Institution of
Mechanical Engineers (1969-70)] a horizontal flip is
faster than a 90° rotation.

So it would appear that a sequence such as
RRHRRRH which involves two H’s and only five R’s is
better than one requiring one H and six R’s. However one
must take into account the fact that the number of letters
needing to be rotated decreases as those whose stamps are
detected are filtered out. So the sequence HRRRHRR,
although involving the same number of each type of
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rotation as the one above, has fewer letters, on average,
needing to be rotated by an R and so would be more
efficient.

[An excellent treatment of this application can be found
in J.A. Gallian Group Theory and Design of a Letter
Facing Machine, American Mathematical Monthly vol
84 (1977) 285-287]

§1.5. Groups and the Kinship System of
the Warlpiri Tribe

The traditional lands of the Warlpiri people lies to
the north west of Alice Springs in Australia. It’s
incredible that such a sophisticated concept as the
dihedral group of order 8 :
should have existed
among such people for
thousands of years. Of
course it’s misleading to ¢
suggest that they knew the
abstract concept itself.
However Dg is certainly
the correct model to explain the complex rules concerning
intermarriage within this tribe.

Moreover anthropologists have discovered that
members of the tribe were able to rapidly perform the
necessary calculations required to decide whether or not
a given marriage could be allowed — calculations that are
equivalent to performing arithmetic in Ds.
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The Warlpiri tribe is divided into eight kinship
groups, which we shall name as 1, 2, ... 8. These eight
groups are paired: (1, 5), (2, 6), (3, 7), (4, 8) and the rules
involve a diagram such as the following (they would
actually draw diagrams in the sand while explaining their
rules to the anthropologists):

1 — 5 The equal signs show the
\ marriage rules. A man from

2 — 6 group 1 could only marry a
) / \ woman from group 5, and
3 — \7 so on. The arrows point
B / from a mother’s group to
— 8 her child’s. So any children
- born to a marriage between
a group 1 man and a group 5 woman, was considered to
be in group 7. A boy in this family could only marry a
group 3 woman and their children would be in group 1.
The Warlpiri people
didn’t have cards, but if
they did they might have
used a square card and
numbered the corners 1 to 4
on one side and 5 to 8 on the other as in this diagram. Each

picture shows what happens if you flip the other about the
vertical axis.

4

These cards could be used as a tool in making
kinship calculations as follows. Hold the card with your
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own group facing you at the top. To see whom you can
marry, flip the card about the vertical axis.

Your spouse’s group is now at the top. If you are a
mother you can find which group your children belong to
by holding the card so your tribe number is at the top and
rotating the card anti-clockwise through 90°. Their
Kinship group now appears at the top.

It’s clear from this that the kinship rules operate
according to the arithmetic of Ds. Let C be the rotation
through 90° about the vertical axis, reflecting the child
rule, and let M be the rotation through 180° about the
vertical axis. Then the group is:

(C, M| C* M2 MC = CtM).

So from the fact that C* = 1, a woman is always in
the same group as her maternal great-great grandmother,
a fact well-known to the tribe. A man is always in the
same group as his paternal grandfather, reflecting the fact
that (MC)? = 1. And a woman’s mother-in-law is in the
same group as her daughter-in-law since

MCt=CM.

[This application is discussed in a book by Marcia
Ascher Ethno mathematics: A multicultural View of
Mathematics, Belmont, California: Brooks-Cole (1991)
reviewed by Judith Grabiner in the American
Mathematical Monthly March 1993.]
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81.6. Galois Says (A Children’s Party

Game)

An amusing application of group theory is to a
children’s party game called Galois Says, in memory of
Evariste Galois who created
group theory before he was
Killed in a duel at the age of
20. It’s a rather fun sort of
game that can be counted on
to keep a bunch of bored
children amused — for a few
minutes anyway. Who says
mathematics can’t  be
useful!

Galois Says is a game basically like O ‘Grady Says
where players are ‘out’ if they make a mistake in obeying
the leader's instructions. These instructions refer to a duel
with loaded pistols.

The instructions are RIGHT, LEFT and LOAD.
With RIGHT and LEFT you simply do the appropriate
right or left turn. To LOAD, you hold your hand up with
two fingers outstretched as if holding a pistol. Now here’s
the catch.

Whenever the gun is loaded you must do the opposite to
what you are told.

If your gun is loaded and you’re told to load, you
must unload, that is, fire. You pretend to fire the gun and
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your hand drops to your side. If told to turn right with a
loaded gun you must turn left and vice versa. But only
when the gun is loaded do you do the opposite. At other
times you must obey the instructions exactly. It’s quite
hilarious to watch when a number of people are playing
and you really need to keep your wits about you to play
well.

The game is a manifestation of the dihedral group
of order 8. The instruction RIGHT is equivalent to the
generator A, the instruction LEFT is equivalent to A~ and
the instruction LOAD is equivalent to B. Just as we got
AB = BA! so in Galois Says,

RIGHT x LOAD = LOAD x LEFT.

8§1.7. Galois and His Groups

The day you began to learn group theory should be
recorded in your diary as a red-letter day because it
represents that point in your mathematical education
when you began to think at a new level of abstraction.
And on the historical level the discovery of groups
marked one of the three or four major changes of direction
in the whole history of mathematics.

Although some vague ideas connected with groups
were around a little earlier, without doubt the honour of
being the founder of group theory goes to Evariste Galois,
a young Frenchman who was fascinated by the inability
of mathematicians to discover a formula for solving
quintics (polynomial equations involving powers of x up
to x°). The type of formula they were looking for was one
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like the quadratic formula which finds the solutions in
terms of the coefficients using the operations of addition,
subtraction, multiplication and division and radicals (the
extraction of roots — square roots, cube roots etc).

A formula for the cubic was found in 1515 and the
quartic was solved in 1545. The next step was the solution
of the general quintic. It wasn’t until the early part of the
nineteenth century that the Norwegian mathematician,
Abel, proved that such a formula doesn’t exist.

Of course there are numerical techniques, which
essentially enable us to solve any polynomial equation to
any desired degree of accuracy. If you’ve met Newton’s
Method you will probably nod your head in agreement.
But | should point out that it’s not that easy. For a start
Newton’s Method can only deal with polynomials with
real coefficients. And even if you have a real polynomial
Newton’s Method will only find its real zeros. How would
you go about solving a real polynomial of degree 6 if the
zeros consisted of three conjugate pairs? You can find a
generalization to Newton’s Method that handles complex
zeros in my notes on Galois Theory.

But what if we want an exact formula of the type
described above. For a general quintic (or polynomial of
higher degree) such a formula will never be found
because Abel proved that it is logically impossible.

Now Galois knew of Abel’s work but he wanted to
go a stage further. He noted that some quintics are soluble
by radicals, that is, their zeros (values of x that make the
polynomial equal to zero) can be expressed exactly by a
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formula of the above type. But for others it isn’t possible.
Which ones are soluble by radicals and which are not?

Galois studied algebraic expressions involving the
zeros a, B, v, 9, ... of a polynomial. Certain permutations
of the zeros always leave the value of these expressions
unchanged. For example, in the case of E = af3 + y3, one
could swap o and 3 or swap y and 3, or perform both
swaps together, and the value of E will be unchanged. Or
the pairs (o, B) and (y, o) themselves could be
interchanged. A less obvious permutation would be:

a—>7—>pB—>0—>a.

This permutation transforms E into the expression
v0 + Ba = E and so leaves the value of E unchanged. There
are, in all, 8 permutations of the set {a, B, v, 8} which
leave the value of E unchanged and these form the
dihedral group Ds.

Other expressions have less symmetry. For
example, if F = a3 — yd the only permutations that leave
F unchanged, apart from the identity, are swapping o and
B, swapping y and & and their product which consists of
swapping the elements of both pairs.

An expression that is less symmetrical again is G =
ap + vy — 8, while H = a + By?5® is only fixed by the
identity permutation.

Galois associated with every polynomial a group
(now called its ‘Galois group’) which consists of certain
permutations of the zeros. He then described the solubility
by radicals (the existence of a formula like the quadratic,
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cubic and quartic ones), of such a polynomial in terms of
the structure of its group.

The life of Galois is just as fascinating as his work.
It was once the subject of a full-length feature film and in
1998 the biography The French Mathematician was
published as a paperback.

Galois didn’t do very well at school. He got
involved in student political riots, he did much of his
mathematics during his frequent spells in prison and he
tried unsuccessfully to get the established mathematical
community to take notice of his work. He was killed in a
duel. All before the age of twenty-one! An account of his
life is given in one of the appendices of these notes.
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EXERCISES FOR CHAPTER 1

EXERCISE 1: For each of the following statements
determine whether it is TRUE or FALSE.

(1) One of the group axioms is the commutative law:
axb=Db=aforall a,b.

(2) A group is a set that is closed under an associative
binary operation that has an identity and where every
element has an inverse.

(3) If A, B, C are the three rotations in the Dutch Wife’s
Mattress Problem (see §1.2) then ABC = 1.

(4) If A, B are the rotations described in §1.3 then
(AB)? =1.

(5) There are exactly 5 solutions to the equation x2 = I in
the dihedral group Ds.

(6) The sequence of operations HRHHRRR is a letter-
facing sequence (see 81.4) — that is, if letters are scanned
in the top-right-hand corner and are rotated according to
this sequence then all letters with a stamp in one of the 8
corners will have that stamp detected.
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(7) If you begin by facing North with your gun unloaded,
in the game Galois Says (see §1.6) and obey the following
sequence of instructions LOAD, LEFT, LOAD, RIGHT
you will end up facing South with your gun unloaded.

(8) Swapping a, B leaves the expression E = (o — B)?
unchanged.

(9) Galois died of old age.
(10) Abstraction is a powerful tool in mathematics.

EXERCISE 2: If A, B, C represent the three mattress-
turning operations and the sequence ABACACBABAA is
carried out month by month over an 11 month period,
what operation should be carried out in the 12" month in
order for the mattress to return to its original position at
the end of the 12 months?

EXERCISE 3: Show that if the sequence of operations
ABACACBABAARB is carried out, month by month over
a twelve month period, the mattress will be in each of its
four possible positions for exactly 3 of the 12 months.

EXERCISE 4: Suppose you have an equilateral triangle
and A represents the rotation through 120° in an
anticlockwise direction about the centre of the triangle,
and suppose that B represents a 180° rotation about an
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axis of symmetry. Prepare a multiplication table for the
group generated by A, B.

EXERCISE 5: If you start playing Galois Says facing
West with the gun loaded and you are told LEFT, which
direction should you now be facing?

EXERCISE 6: In playing Galois Says, show that:
LEFT x LOAD x RIGHT = RIGHT x LOAD x LEFT.

EXERCISE 7: In how many different ways can you write
the algebraic expression abc + def so that its value is
unchanged. (For example, fde + bac has the same value
as abc + def even though it looks different. Include the
expression abc + def itself.)

EXERCISE 8: Show that the operation: o« — v, B — 9,

v — B, 6 = a leaves the value of the expression af + yd

unchanged while the operation:
a—>B,B—>y,y—>0,0—>a

does not.

EXERCISE 9: Consider the set G = {A, B, C, D} under
the binary operation given by the following table:

* | A B C
I I A B C
Al A B C A
Bl B C A I
C| C I I B

50



Calculate two different values of A? by putting
parentheses into A = A = A = A in different ways. So the

associative law does not hold. Which of the other 3 group
axioms hold for this system? Is this an abelian group?

SOLUTIONS FOR CHAPTER 1

EXERCISE 1:

(1) is FALSE — the commutative law only holds in abelian
groups;

(2) TRUE;

(3) TRUE, since AB=Cand C?>=1;

(4) TRUE;

(5) FALSE — there are 6 solutions: I, A%, B, AB, A’B and
A’B

(6) FALSE, because HH = I;

(7) TRUE;

(8) TRUE;

(9) FALSE — he was killed in a duel at 20;

(10) TRUE

EXERCISE 2: Since the commutative law xy = yx holds
in the mattress group we can simplify ABACACBABAA
to A®B3C? = B, so an extra factor of B is required to make
the product the identity.

EXERCISE 3: The successive products after 1, 2, 3, ...
months are:
A, AB=C, ABA=CA=B, ABAC=BC=A, etc.
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These products are A, C, B, A, I,C, A I,B,C,B, I
Each of these represents one of the four positions of the
mattress and each occurs 3 times.

EXERCISE 4:

I A A B AB AB
| A | A2 B |AB |AB

Al A | A | |AB|AB| B

A?| A? I A |AB| B | AB

Bl B |AB|AB| | A2 | A

AB| AB| B |AB| A I A2

AB|AB|AB| B | A2 A I

EXERCISE 5: NORTH (that is you turn right because
the gun is loaded).

EXERCISE 6: If you start facing North, for example,
with the gun unloaded then LEFT x LOAD x RIGHT and
RIGHT x LOAD x LEFT both result in you facing South
with the gun unloaded. There’s a difference in how you
got there (in one case you’ll have made two left turns and
in the other you’ll have made two right turns) but we’re
only taking into account the final position, which is the
same in each case.

EXERCISE 7: There are 6 ways of arranging a, b, ¢ and
for each of these there are 6 ways of arranging d, e, f. So
in all there are 36 ways of writing abc + def in such a way
that the first term is equivalent to abc.
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But the two terms can be swapped, giving twice as
many possibilities altogether, that is, there are 72 ways of
writing abc + def.

EXERCISE 8: The first operation changes aff + yd into
v + Ba which algebraically is equivalent to o + yd. The
second operation changes af + yd into By + da which is
equivalent to ad + By but not the original expression o3
+7v0.

EXERCISE 9: (A= A) = (A= A) =B = B = A while
(A*A)*A)=(BxA)~A=CxA=1I.

(All the other ways of inserting parentheses also give I.

This system satisfies the Closure Law, the Identity Law

and the Inverse Law. It even satisfies the Commutative
Law. But, without the Associative Law it is not a group.
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