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1. INTRODUCTION TO 

GROUPS 
 

§1.1. Group Theory: The Door to 

Abstract Mathematics 
 So you’ve decided to study group theory!  Whether 

or not you made a free choice, or whether it just happens 

to be part of a course you have to study, is immaterial. 

The important thing is that you’re properly introduced to 

the subject and that you develop an overview into which 

you can retreat whenever you get lost in the details. 

 I could begin this introduction by telling you what 

a group is. In fact I will. Whether you’ll be any the wiser 

remains to be seen! 

 

 

   There now.  You know what a group is. All of 

group theory is built on that one brief statement. Yet it’s 

likely that you don’t feel very comfortable about groups 

at this stage. Numbers have been your friends for as long 

as you’ve known any mathematics and, more recently, 

you’ve learnt to deal with mathematical objects like 

functions, matrices and vectors. But groups are sets 

A GROUP (G, *) is a set G together with 

a binary operation * which is associative, 

has an identity and has inverses for all its 

elements. 
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whose elements aren’t specified. Are they numbers? 

Possibly. Are they matrices? They might be. It all sounds 

a bit vague and abstract. 

 

 Of course once you’ve been given some examples 

you’ll feel a little happier. But before we do that it would 

be helpful if we talked about the nature of abstraction. 

One thing you’ll soon discover is that groups are 

essentially abstract entities. 

 

 The word ‘abstract’ usually conveys the idea of 

something that’s abstruse, 

vague and very difficult.  In 

fact it’s more accurate to 

associate ‘abstract’ with words 

such as ‘powerful’, ‘virtual’, 

and even ‘beautiful’. 

 The ability to handle 

abstraction is possibly the 

greatest thing that sets humans 

apart from other creatures. Language is a system whereby 

concrete experiences are abstracted and are represented 

by sounds or squiggles. Numbers may seem to be very 

concrete but a moment’s reflection will show you how 

sophisticated and abstract they are. Once we move 

beyond ‘two apples’ or ‘two monkeys’ to just ‘two’ we’ve 

come a long way in the process of abstraction.  And all 

that before the age of five! 
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 All areas of knowledge involve ever deeper levels 

of abstraction. Our modern world is becoming 

increasingly abstract. Money can be electronic. Reality 

can be virtual. Atomic particles are now considered to 

behave more like waves than little billiard balls. 

 

 What is the real ‘stuff’ of mathematics – the 

fundamental objects of study?  For most of your 

mathematical life you would have said ‘numbers’. Of 

course ‘number’ has meant different things to you at 

different times – from ‘things you count with’, to 

‘positions on the number line’ and finally to ‘elements of 

the field of complex numbers’. But all this time you lived 

within this system of complex numbers and you explored 

every far corner. 

 The system of complex numbers is by far the most 

important mathematical system of all, but it’s still only 

one system. More recently you’ve encountered other 

systems – systems of matrices, systems of polynomials 

and so on. In abstract algebra we don’t just study further 

examples of algebraic systems but rather we study 

algebraic systems themselves. 

 

 In group theory we restrict our attention to systems 

with just one binary operation satisfying certain key 

properties. A binary operation * on a set S is a function 

from S  S to S, or more informally, it’s an operation that 

combines any (ordered) pair of elements a, b  S to 

produce an element a * b  S. 
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 Other branches of abstract algebra, such as ring 

theory, consider systems with two or more operations but 

in group theory we see how far we can get with just one. 

After all, if we have a system with two binary operations, 

we can always close one eye and focus on one operation 

at a time. 

 But why do we insist that they possess certain 

properties? Surely if we make no conditions our theory 

would be more general. That’s true, but the trouble is that 

too much generality can lead to shallowness. A rich 

theory depends on having just the right amount.  And, as 

the mathematicians who shaped group theory discovered, 

there are four properties which lead to a theory which, on 

the one hand is very rich and beautiful, and on the other, 

is very useful and applicable. 

 These four properties are called the ‘group 

axioms’. But don’t think of these axioms as somehow 

self-evident truths in the way that many people think of 

the axioms of geometry. They’re simply four properties 

that a system with a single binary operation must possess 

before it’s allowed to be called a ‘group’. 

 There was a time when groups were more concrete. 

When Évariste Galois invented the concept of a group, in 

the early 1800s, groups consisted of permutations (or 

‘substitutions’) of the zeros of a polynomial. Then it was 

realized that most of the theory doesn’t need to assume 

anything about the nature of the things being permuted. 

Here was the first level of abstraction. Groups became 

sets of permutations of ‘things’. 
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 Then, towards the end of the nineteenth century, 

group theorists began to realise that a considerable 

portion of that theory, by now well developed, could be 

built up from just four basic facts about permutations. So 

the theory will apply to any other algebraic system that 

satisfies those properties. No longer do the elements have 

to be permutations, although an important branch of 

group theory has to do with permutation groups. 

 

 What are these four axioms? The first, closure, is 

really implicit in the concept of a binary operation. You’ll 

notice that we didn’t explicitly refer to it in our brief 

definition above. It simply insists that the result of 

combining two elements of a group should again be in the 

group. 

 

CLOSURE: a * b  G for all a, b  G. 

 

 Here we’re using * to refer to the binary operation 

and, of course,  denotes set membership.  Without 

closure we wouldn’t be able to consider an expression like 

(a * b) * c because if a * b lies outside of G the result of 

combining it with  c  wouldn’t be defined. 

 If the operation had been ordinary addition or 

multiplication of numbers we’d normally remove the 

parentheses here. The expression a + b + c is 

unambiguous because both ways of interpreting it have 

the same value. That is, (a + b) + c = a + (b + c). Addition 

and multiplication of numbers and polynomials and 
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matrices are associative – but not every useful operation 

in mathematics is. For example (a − b) − c is not the same 

as a − (b − c) and so subtraction isn’t associative. The 

vector product u  v for ℝ3 is also a useful operation that 

fails to be associative. 
 

 Nevertheless we’ll insist on the associative law 

before a system can be awarded the title ‘group’. One 

fortunate result of this is that it allows us to have 

unambiguous powers. We’ll denote an expression a * a * 

a * ... * a, with n factors, as an by analogy with 

multiplication of numbers. Without the associative law 

this would be highly ambiguous. 

 For example does a4 mean ((a * a) * a) * a  or 

perhaps  (a * a) * (a * a) or maybe it could be (a * (a * 

a)) * a or could it mean  a * ((a * a) * a) or even a * (a * 

(a * a))? Without the associative law these might 

represent 5 different elements! 

 

ASSOCIATIVITY: 

(a * b) * c = a * (b * c) for all a, b, c  G. 

 

 In ordinary algebra we’re usually able to reverse 

the fundamental operations.  Addition can be reversed by 

subtraction and multiplication by a non-zero number can 

be reversed by division. We can do these things because 

of inverses such as −x and 1/x. Inverses are vital to group 

theory and so we build them into the axioms. But before 
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we can even talk about inverses we must have an identity 

element. 

 

IDENTITY: There exists e  G such that: 

e * a = a = a * e for all a  G. 

 

 You’re used to writing the identity as 0 or 1 but for 

the moment we will use the neutral symbol e for the 

identity to avoid confusion. This is because you can have 

groups of numbers with some strange binary operation, 

neither addition nor multiplication, where the identity is 

neither 0 nor 1. 

  

INVERSES: For all a  G there exists b  G such that 

a * b = e = b * a. 

 

 With groups of numbers under addition (this just 

means we’re focussing on addition as our operation) the 

identity is 0. In other groups it’s the zero matrix or the 

zero vector. With groups of numbers under multiplication 

the identity is 1 and with matrix groups under matrix 

multiplication the identity is the identity matrix I. 

 With groups of numbers under addition the inverse 

of  x  is −x. Under multiplication it’s x−1 or 1/x. 

  But not every real number has an inverse under 

multiplication. The number zero doesn’t have one. All 

this means is that when talking about the real numbers 

under multiplication we must exclude zero if we want to 

make a group. The system of all real numbers is a group 
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under addition. The system of all non-zero real numbers 

is a group under multiplication. 

 

 Let’s assemble all these axioms in one place to give 

a more explicit definition of a group. 

 

A group (G, *) is a set G together with a binary operation 

* such that the following hold: 

 

CLOSURE LAW: a * b  G for all a, b  G. 

ASSOCIATIVE LAW: 

(a * b) * c = a * (b * c) for all a, b, c  G. 

IDENTITY LAW: There exists e  G such that 

e * a = a = a * e for all a  G. 

INVERSE LAW: For all a  G there exists b  G such 

that a * b = e = b * a. 

 

 Notice that we don’t assume the Commutative 

Law: a * b = b * a for all a, b. An abelian group (named 

after the Norwegian mathematician Abel) is a group in 

which the following holds: 

 

COMMUTATIVE LAW: a * b = b * a for all a, b  G. 

 

 It’s clear that you’ve been on close terms with 

groups most of your mathematical life. The first 

mathematical system you met was the system of counting 

numbers. Because you didn’t know about negative 
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numbers at that stage you would have to wait to meet your 

first group. Probably the first group you ever met was the 

group of positive rational numbers (fractions) where the 

operation is multiplication. The axioms were never 

mentioned in primary school, but you knew that when you 

multiplied two fractions you always got a fraction.  

 

 Because products such as 
2

3
  

1

2
  

3

4
  were written 

without parentheses it probably never occurred to you that 

potentially you might have obtained a different answer if 

you’d multiplied 
2

3
 by 

1

2
  first rather than 

1

2
 by 

3

4
 . The fact 

that you didn’t, and that it produced 
1

4
  however you did 

it, reinforced your instinctive acceptance of the 

associative law. And the ‘invert and multiply rule’ 

assured you that inverses always exist. 

 

 The next group that you encountered was probably 

the group of integers under addition as you learnt about 

negative numbers. Then, as you extended your 

mathematical horizons you encountered many other 

groups of numbers. 

 

 But groups needn’t consist of numbers. There are 

groups of matrices and groups of functions. In fact, to 

emphasize the wonderfully abstract nature (i.e. 

generality) of the group concept, here’s an example of a 

group where the elements appear to be as non-
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mathematical as you could imagine. They’re different 

ways of turning a mattress! 

 

§1.2. The Dutch Wife’s Mattress Problem 
 For centuries Dutch wives have been renowned for 

being very clean and very 

methodical and one of their basic 

household chores was turning over 

the mattresses every month to 

promote even wear. This problem 

concerns the best way to do it. 

These days households are too busy 

to be bothered doing this and this 

monthly ritual has largely disappeared along with the 

chores of ironing tea-towels or darning socks. But even if 

it is a problem that no longer has a practical significance 

it will help us to understand the concept of a group. 

 I should point out that although I have called it the 

Dutch Wife’s Problem I don’t mean to imply that doing 

housework is only woman’s work. I got taken to task by 

one of my readers who resented this implication. The only 

reason why I call it “The Dutch Wife’s Mattress Problem” 

is because my wife, now keeping Heaven 

clean and tidy, was Dutch and I used to 

have to help her with rotating the 

mattress. 

 The easiest rotation to perform is 

the one where you turn the mattress over, 

left to right when you stand at the foot of the bed. 



 25 

 

 But if you did this every time, the head end would 

never change with the foot. So it’s necessary sometimes 

for the two of you to pick up the mattress and walk around 

the bed, rotating the mattress head to foot. 

 

 But a Dutch wife is very thorough. She knows that 

there’s a third rotation that can be performed. This 

involves lifting up the head end so that the mattress 
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becomes vertical (perhaps narrowly missing the ceiling 

light) and then bringing it down so that it’s now at the foot 

of the bed. The mattress is now upside down relative to 

the way it was, with head and foot reversed. 

 The Dutch Wife’s Problem is to devise a mattress-

turning regime so that the mattress wears uniformly. One 

could use all three rotations in turn but, as we’ll see, this 

doesn’t achieve even wear. 

 

 There are three basic mattress turns. The simplest, 

turning the mattress over, along its longer axis, we shall 

call A. Turning it head to 

foot, while keeping the 

mattress level, we shall call 

B. The one that nearly 

knocks out the light fitting, 

we’ll call C. 

 The system mentioned above involves a three-

monthly cycle such as: 

A, B, C, A, B, C, ... 

 

 Now there are two things wrong with such a plan. 

 

(1) It’s not necessary to do a C. You can achieve the same 

result as a C without risking the ceiling light, simply by 

doing A followed by B. 

(2) More importantly it doesn’t achieve what it sets out to 

do (ensuring that the mattress wears evenly) because at 

the end of each three-month period the mattress is back 

A B 

C
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the way it was.  Since there are four possible positions, 

one position gets missed out completely and it’s the same 

one each time! One side of the mattress will get two 

months wear to every month on the other side. To see this 

clearly I’ve marked one corner of the mattress. 

 

         JAN           FEB             MAR              APR 

 

                      A                 B                   C                     

 

             3 MONTH CYCLE      → 

 

 So what should all good mattress turners do? 

Simply leave out the most difficult rotation, C, and adopt 

the pattern: A, B, A, B, ...  

 

 Just because C is possible doesn’t mean we should 

use it. But won’t this mean that things will repeat after 

only two months? Not at all. The above regime will cause 

the mattress to go through all four positions once before 

repeating. We achieve our goal of even wear. 

 

 JAN            FEB             MAR          APR            MAY  

 

              A                 B                 A                  B 

 

 EVEN WEAR OVER 4 MONTHS      → 
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 The group here has four elements, each of which is 

a way of turning the mattress. “Four?” you say, “A, B, C 

– what’s the fourth?”. The fourth is I which is the identity 

operation that does nothing. It’s the operation that less 

conscientious people use – those who can’t be bothered 

turning the mattress at all. Although it sounds trivial the 

identity operation is as important to our little group as the 

number  1  is to arithmetic. 

 

 So our group contains four things, or as we shall 

say, we have a group of “order 4”. The elements of our 

little mattress group are I, A, B and C and the operation is 

to follow one rotation by another – finding a single 

rotation which would have achieved the same result. By 

experimenting with a real mattress, or better still with a 

paper model, or even better still by simulating a rectangle 

in our imagination, we conclude that A  followed by  B  

achieves the same result as C which we express as 

A * B = C. 

 

 And  A  followed by  A  again reverts the mattress 

back to the way it was. Two A’s in succession is 

equivalent to doing nothing, that is 

 

A * A = I 

 

which we can express more simply as A2 = I. 
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 That’s not to say that A followed by another A is 

equivalent in all respects to I. There’s a lot less effort 

involved in doing  I  than in  A2.  So we’re losing some 

information here. But in terms of where things are at the 

end of it all, A2 is the same as I. 

 

 Since there’s no danger of confusion we can omit 

the * and simply write these equations as AB = C and A2 

= I. This notation makes it look very much like ordinary 

algebra, but we must be a little careful. The second 

equation tempts us to conclude that A =  I.  But this is 

nonsense. There’s no such thing as −I in our mattress 

group. You mustn’t expect the algebra of a group to 

always behave like ordinary algebra, the algebra of 

numbers. To some extent you’ll have to learn algebra all 

over again in this new context. 

 

 We can summarize our little algebraic system by 

means of a group table: 

 

 

 If x represents one of the ‘numbers’ in our little 

group then the equation x2 = I has four solutions. But who 

ever heard of a quadratic equation having more than two 

 I A B C 

I I A B C 

A A I C B 

B B C I A 

C C B A I 
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solutions? Of course it can’t happen in ordinary algebra. 

But we’re now beginning to realise that the algebra we 

learnt at school doesn’t apply universally. It applies to the 

system of real numbers and it applies to the system of 

complex numbers. In fact the core of high-school algebra 

(provided you leave out the inequalities) works for any 

system that satisfies the field axioms.  But groups aren’t 

fields and the algebra of groups can be a little more 

dangerous than the algebra of a field. Of course, danger 

spells excitement! 

 

§1.3. The Dihedral Group of Order 8. 
 In the above discussion we 

assumed that the mattress was 

rectangular. A heart-shaped mattress 

would be more exotic but it would 

rule out rotating head to foot. The 

group in this case would contain only 

the 180° rotation about the axis of 

symmetry, and of course the identity. 

 

 A circular mattress has a very high degree of 

symmetry and its group would be infinite! In principle we 

could rotate the mattress through any angle or turn it over 

around any one of the infinitely many axes of symmetry. 

 But let’s go for a shape that has a little more 

symmetry than the rectangle, but not as much as the circle. 

Let’s imagine a square mattress. In fact we can drop the 
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references to beds and mattresses because what’s going 

on here is pure geometry. 

 Let’s imagine a square, or better still, let’s cut out 

a little square from cardboard and label the corners 1, 2, 

3, 4 in order. Also write the word RESET in the middle 

 

 

 

 

 

 

 Now turn the paper over and label the corners on 

the other side. You must ensure that this labelling is 

consistent with the first, so that corner 1 is corner 1 no 

matter which side of the paper you are looking at, and so 

on. Don’t write the word RESET on this side. 

 

 

 

 

 

 Now whenever I say RESET rotate your square, 

turning it over if necessary, so that you can read the word 

RESET the right way up. This is the reset position. 

 

 

 

 

 

1 2 

3 4 

RESET 

1 2 

4 3 

1 2 

3 4 
RESET 
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 The rotation group of the square consists of all 

rotations which, at the end, leave the square occupying 

the same space as at the beginning (ignoring the labels). 

 A square has four axes of symmetry, vertical, 

horizontal and both diagonals. All four axes pass through 

the centre. If you flip the square about one of these axes 

the square will appear to be the same, although the labels 

will be different. These four 180° rotations belong to the 

rotation group. In addition there are rotations in the plane 

of the square, about the centre, through 90°, 180°, 270° 

and, not forgetting the identity, 0°. This gives us a group 

of order 8 (that is, 8 elements). 

 

 Let A denote the positive 

(anti-clockwise) 90° rotation about 

the centre. Then A2 is the 180° 

rotation and A3 is the 270° anti-

clockwise rotation (or equivalently 

a clockwise 90° rotation).  Let B 

denote the 180° rotation about the 

horizontal axis.  One can easily verify that the 180° 

rotation about the vertical axis is A2B and that AB and 

A3B are the 180° rotations about the two diagonals. 

 

The rotation group of the square is thus 

{I, A, A2, A3, B, AB, A2B, A3B} 

and its group table is: 

 

 

A 

B 
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 I A A2 A3 B AB A2B A3B 

I I A A2 A3 B AB A2B A3B 

A A A2 A3 I AB A2B A3B B 

A2 A2 A3 I A A2B A3B B AB 

A3 A3 I A A2 A3B B AB A2B 

B B A3B A2B AB I A3 A2 A 

AB AB B A3B A2B A I A3 A2 

A2B A2B AB B A3B A2 A I A3 

A3B A3B A2B AB B A3 A2 A I 

 

 All of these can be verified using your little square. 

For example, reset the square to its initial position and 

perform operation AB, that is, A followed by B. Note 

down the positions of the 4 corners. Now reset the square 

again and perform operation A3. This is A done 3 times. 

You should see that the positions of the corners are as 

before. So you will see that AB times A3 is A2B 

 Notice from the table that BA = A3B. You can 

verify this using your square if you wish. But A3 = A−1 (a 

270 rotation clockwise is the same as a 90 rotation anti-

clockwise) so BA = A3B = A−1B. 

 Notice that this is different to AB, showing that AB 

 BA. The commutative law breaks down in this group. 

This lack of commutativity is something that never occurs 

with numbers. But then there’s no reason why rotations 

should behave like numbers. In general binary operations 

don’t obey the commutative law. Numbers are the 

exception – rotations follow the general rule of not 

commuting. 
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 Even in life things are usually non-commutative. It 

usually does matter in which order you do things. For 

example if 

 

O = open the door and W = walk through the door 

 

then OW (open the door and then walk through) is usually 

less painful than WO. And, especially in previous 

generations, many lives have been complicated by the 

lack of the commutative law when 

 

M = get married and B = have a baby! 

 

 Once again we’re reminded that we must learn 

algebra all over again. In many ways the algebra of groups 

is simpler than the algebra of numbers because we only 

have one operation. But in other ways it’s more 

complicated. We’re so used to using the commutative law 

for numbers that we wouldn’t hesitate to cancel the x and 

x−1 in the expression x−1yx and, for numbers, that would 

be perfectly justified. On the other hand, in a non-

commutative group this remote cancellation would not be 

justified and it could very well happen that x−1yx is quite 

different to y. Certainly we can cancel an x with its 

inverse, but only if they are adjacent. 

 Although there are eight elements in this group 

we’ve managed to express them all in terms of just A and 

B. We call these generators for the group. There are 
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many relations that hold between these generators but all 

of them can be deduced from just these three: 

A4 = I,    B2 = I,    BA = A−1B 

So we can summarise this group by writing it as 

A, B | A4 = 1, B2 = 1, BA = A−1B. 

 

 We call this a presentation for G and read this as 

“the group generated by A and B such that A4 = 1, etc”. 

(When we write a presentation we usually use the symbol 

1 for the identity.) 

 This presentation is a very compact way of 

describing the group because the entire group table can be 

deduced from it. Notice that the relation BA = A−1B can 

be regarded as the rule: moving a B past an A inverts the 

A. (But don’t treat this as a universal rule of group theory. 

It just applies whenever we have BA = A−1B.) 

 Using this rule, together with the other relations, 

we can verify every product in the group table without the 

need to rotate an actual square. For example: 

(A2B)(A3B) = A2(BA3)B 

                     = A2(A−3B)B 

                       = (A2A−3)(BB) 

                 =A−1 = A3. 

 

 Where we represent a group in terms of generators 

and relations we call it a presentation. We list the 

generators to the left of the bar and the relations to the 

right. Sometimes the relations are equations. But if the 

right hand side of the equation is the identity we leave this 
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out and call the left hand side a relator. So in a 

presentation we can use a mixture of relations and 

relators. 

 For the rotation group of the square we could write 

the presentation more simply as 

A, B | A4, B2, BA = A−1B. 

We could even change the equation BA = A−1B into the 

relator B−1ABA because BA = A−1B can be rewritten as 

B−1ABA = 1. However it is more convenient to leave it 

as BA = A−1B because it provides a recipe for moving a 

B past an A. 

 This group is called the dihedral group of order 8. 

More generally we define the dihedral group of order 

2n, for any positive integer n, as 

D2n = An, B2, BA = A−1B. 

It gets the name ‘dihedral’ (literally ‘two faces’) from 

the fact that it’s the rotation group of an n-sided regular 

polygon. 

 

 Representing a group in terms of generators and 

relations is not a new concept, but it has becoming 

increasingly important over the last few years and it’s a 

further level of abstraction in group theory. All the 

information needed to compute in this group is inherent 

in the relations. Many groups that arise in applications 

come in this form. A huge amount of recent work has 

gone into extracting the properties of a group from such a 

presentation. More of this later.  
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 For now, let’s get back to the dihedral group of 

order 8. It’s just one of the infinitely many groups that 

exist, but it’s one that keeps popping up in applications. 

We met it as the rotation group of the square but in the 

next three sections we’ll find it arising in the context of 

mail sorting, the kinship rules of a certain tribe of First 

Nation People in Australia and the basis for a children’s 

party game. 

 “But that’s not mathematics!” you may be thinking. 

Hopefully, as a result of learning some group theory, 

you’ll have a better appreciation of what mathematics is. 

It’s not just about counting or measurement. It’s also 

about patterns and rules and structure. 

 

§1.4. Groups and Mail Sorting 
 These days letters are sorted by machine. The 

postage stamp is, or should be, in the top right-hand 

corner but most letters will come into the sorting machine 

upside-down or back-to-front. So the machine has to 

orient all the letters in the same way. 

 Suppose the letters are coming in on a conveyor 

belt in all possible orientations. We can have a detector, 

which scans the top right-hand corner for a stamp. Those 

envelopes whose stamp is detected are sent off for further 

processing and the rest are rotated in some way.  
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 From here they pass to another detector, and so on. 

In this way a given letter can be flipped over and rotated 

until a stamp is detected. And any letter, for which no 

stamp can be found, goes off to another place. 

 

 Even though most letters are rectangular rather than 

square the possible flips and rotations will all be elements 

of the rotation group of a square – the dihedral group of 

order 8. 

 Two operations that are widely used in mail sorting 

machines are R = a 90° anti-clockwise rotation and H = a 

horizontal flip (top to bottom). These are the two 

generators A and B of the dihedral group under different 

names. Although, in theory, a left-to-right flip could be 

used, it’s only in recent years that such flips have been 

possible at high speed. And flips about a diagonal seem to 

be quite impractical to implement. 

 Now it’s obvious that a system involving eight 

detectors and seven flip/rotation operations is necessary. 

(We don’t need a machine to produce the identity 

rotation!) And since it’s reasonable to want to minimize 

the number of operations, we should limit ourselves to 

just seven. But not every sequence of 7 H’s and R’s will 

achieve the desired result of putting a letter through all 8 

possible orientations. 

 Obviously it would be no good having two 

successive H’s or four R’s in a row. And while it might 

have been patriotic for the British Post Office to start the 

sequence with HRH, the next step would be forced to 
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repeat an orientation that has already occurred. This is 

because HRH is equivalent to R3 and so if the next 

operation was R the letter would repeat its original 

orientation while if it was H we would repeat the 

orientation we had two steps before. 

 

 Less obviously, the sequence RRHRRHR will not 

do because it repeats two orientations while missing out 

two others. (Check this yourself.) 

 A letter-facing sequence that is actually used is 

RRRHRRR. (Check that this achieves all eight 

orientations.) The sequence RRHRRRH is also used. 

 Mathematically these are equally good solutions to 

the problem. But according to Post Office engineers [G.P. 

Copping: Automatic Letter Facing, British Postal 

Engineering, Proceedings of the Institution of 

Mechanical Engineers (1969-70)] a horizontal flip is 

faster than a 90° rotation. 

 So it would appear that a sequence such as 

RRHRRRH which involves two H’s and only five R’s is 

better than one requiring one H and six R’s. However one 

must take into account the fact that the number of letters 

needing to be rotated decreases as those whose stamps are 

detected are filtered out. So the sequence HRRRHRR, 

although involving the same number of each type of 

H H

H

R
R

same 

same  
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rotation as the one above, has fewer letters, on average, 

needing to be rotated by an R and so would be more 

efficient. 

[An excellent treatment of this application can be found 

in J.A. Gallian Group Theory and Design of a Letter 

Facing Machine, American Mathematical Monthly vol 

84 (1977) 285-287] 

 

§1.5. Groups and the Kinship System of 

the Warlpiri Tribe 
 The traditional lands of the Warlpiri people lies to 

the north west of Alice Springs in Australia. It’s 

incredible that such a sophisticated concept as the 

dihedral group of order 8 

should have existed 

among such people for 

thousands of years. Of 

course it’s misleading to 

suggest that they knew the 

abstract concept itself. 

However D8 is certainly 

the correct model to explain the complex rules concerning 

intermarriage within this tribe. 

 

 Moreover anthropologists have discovered that 

members of the tribe were able to rapidly perform the 

necessary calculations required to decide whether or not 

a given marriage could be allowed – calculations that are 

equivalent to performing arithmetic in D8. 
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 The Warlpiri tribe is divided into eight kinship 

groups, which we shall name as 1, 2, ... 8. These eight 

groups are paired: (1, 5), (2, 6), (3, 7), (4, 8) and the rules 

involve a diagram such as the following (they would 

actually draw diagrams in the sand while explaining their 

rules to the anthropologists): 

 

The equal signs show the 

marriage rules. A man from 

group 1 could only marry a 

woman from group 5, and 

so on. The arrows point 

from a mother’s group to 

her child’s. So any children 

born to a marriage between 

a group 1 man and a group 5 woman, was considered to 

be in group 7. A boy in this family could only marry a 

group 3 woman and their children would be in group 1. 

 The Warlpiri people 

didn’t have cards, but if 

they did they might have 

used a square card and 

numbered the corners 1 to 4 

on one side and 5 to 8 on the other as in this diagram. Each 

picture shows what happens if you flip the other about the 

vertical axis. 

 

 These cards could be used as a tool in making 

kinship calculations as follows. Hold the card with your 

 

1

2

3

4

5

6

7

8

1 

2 

3 4 

5 

6 

7 8 
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own group facing you at the top. To see whom you can 

marry, flip the card about the vertical axis. 

 Your spouse’s group is now at the top. If you are a 

mother you can find which group your children belong to 

by holding the card so your tribe number is at the top and 

rotating the card anti-clockwise through 90°. Their 

kinship group now appears at the top. 

 

 It’s clear from this that the kinship rules operate 

according to the arithmetic of D8. Let C be the rotation 

through 90 about the vertical axis, reflecting the child 

rule, and let M be the rotation through 180 about the 

vertical axis.  Then the group is: 

 

C, M | C4, M2, MC = C−1M. 

 

 So from the fact that C4 = 1, a woman is always in 

the same group as her maternal great-great grandmother, 

a fact well-known to the tribe. A man is always in the 

same group as his paternal grandfather, reflecting the fact 

that (MC)2 = 1. And a woman’s mother-in-law is in the 

same group as her daughter-in-law since 

MC−1 = CM. 

 

[This application is discussed in a book by Marcia 

Ascher Ethno mathematics: A multicultural View of 

Mathematics, Belmont, California: Brooks-Cole (1991) 

reviewed by Judith Grabiner in the American 

Mathematical Monthly March 1993.] 
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§1.6. Galois Says (A Children’s Party 

Game) 
 An amusing application of group theory is to a 

children’s party game called Galois Says, in memory of 

Évariste Galois who created 

group theory before he was 

killed in a duel at the age of 

20. It’s a rather fun sort of 

game that can be counted on 

to keep a bunch of bored 

children amused – for a few 

minutes anyway. Who says 

mathematics can’t be 

useful! 

 Galois Says is a game basically like O’Grady Says 

where players are ‘out’ if they make a mistake in obeying 

the leader's instructions. These instructions refer to a duel 

with loaded pistols. 

 The instructions are RIGHT, LEFT and LOAD. 

With RIGHT and LEFT you simply do the appropriate 

right or left turn. To LOAD, you hold your hand up with 

two fingers outstretched as if holding a pistol. Now here’s 

the catch. 

 

Whenever the gun is loaded you must do the opposite to 

what you are told. 

 

 If your gun is loaded and you’re told to load, you 

must unload, that is, fire. You pretend to fire the gun and 
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your hand drops to your side. If told to turn right with a 

loaded gun you must turn left and vice versa. But only 

when the gun is loaded do you do the opposite. At other 

times you must obey the instructions exactly. It’s quite 

hilarious to watch when a number of people are playing 

and you really need to keep your wits about you to play 

well. 

 The game is a manifestation of the dihedral group 

of order 8. The instruction RIGHT is equivalent to the 

generator A, the instruction LEFT is equivalent to A−1 and 

the instruction LOAD is equivalent to B. Just as we got 

AB = BA−1 so in Galois Says, 

RIGHT  LOAD = LOAD  LEFT. 

 

§1.7. Galois and His Groups 
 The day you began to learn group theory should be 

recorded in your diary as a red-letter day because it 

represents that point in your mathematical education 

when you began to think at a new level of abstraction. 

And on the historical level the discovery of groups 

marked one of the three or four major changes of direction 

in the whole history of mathematics. 

 Although some vague ideas connected with groups 

were around a little earlier, without doubt the honour of 

being the founder of group theory goes to Évariste Galois, 

a young Frenchman who was fascinated by the inability 

of mathematicians to discover a formula for solving 

quintics (polynomial equations involving powers of x up 

to x5). The type of formula they were looking for was one 
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like the quadratic formula which finds the solutions in 

terms of the coefficients using the operations of addition, 

subtraction, multiplication and division and radicals (the 

extraction of roots – square roots, cube roots etc). 

 A formula for the cubic was found in 1515 and the 

quartic was solved in 1545. The next step was the solution 

of the general quintic. It wasn’t until the early part of the 

nineteenth century that the Norwegian mathematician, 

Abel, proved that such a formula doesn’t exist. 

 Of course there are numerical techniques, which 

essentially enable us to solve any polynomial equation to 

any desired degree of accuracy. If you’ve met Newton’s 

Method you will probably nod your head in agreement. 

But I should point out that it’s not that easy. For a start 

Newton’s Method can only deal with polynomials with 

real coefficients. And even if you have a real polynomial 

Newton’s Method will only find its real zeros. How would 

you go about solving a real polynomial of degree 6 if the 

zeros consisted of three conjugate pairs? You can find a 

generalization to Newton’s Method that handles complex 

zeros in my notes on Galois Theory. 

 But what if we want an exact formula of the type 

described above. For a general quintic (or polynomial of 

higher degree) such a formula will never be found 

because Abel proved that it is logically impossible. 

 Now Galois knew of Abel’s work but he wanted to 

go a stage further. He noted that some quintics are soluble 

by radicals, that is, their zeros (values of x that make the 

polynomial equal to zero) can be expressed exactly by a 
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formula of the above type. But for others it isn’t possible. 

Which ones are soluble by radicals and which are not? 

 Galois studied algebraic expressions involving the 

zeros , , , , ... of a polynomial. Certain permutations 

of the zeros always leave the value of these expressions 

unchanged. For example, in the case of E =  + , one 

could swap  and  or swap  and , or perform both 

swaps together, and the value of E will be unchanged. Or 

the pairs (, ) and (, ) themselves could be 

interchanged. A less obvious permutation would be: 

 →  →  →  → . 

 This permutation transforms E into the expression 

 +  = E and so leaves the value of E unchanged. There 

are, in all, 8 permutations of the set {, , , } which 

leave the value of E unchanged and these form the 

dihedral group D8. 

 Other expressions have less symmetry. For 

example, if F =  −  the only permutations that leave 

F unchanged, apart from the identity, are swapping  and 

, swapping  and  and their product which consists of 

swapping the elements of both pairs. 

 An expression that is less symmetrical again is G = 

 +  − , while H =  + 23 is only fixed by the 

identity permutation. 

 Galois associated with every polynomial a group 

(now called its ‘Galois group’) which consists of certain 

permutations of the zeros. He then described the solubility 

by radicals (the existence of a formula like the quadratic, 
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cubic and quartic ones), of such a polynomial in terms of 

the structure of its group. 

 

 The life of Galois is just as fascinating as his work. 

It was once the subject of a full-length feature film and in 

1998 the biography The French Mathematician was 

published as a paperback. 

 Galois didn’t do very well at school. He got 

involved in student political riots, he did much of his 

mathematics during his frequent spells in prison and he 

tried unsuccessfully to get the established mathematical 

community to take notice of his work. He was killed in a 

duel. All before the age of twenty-one! An account of his 

life is given in one of the appendices of these notes. 
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EXERCISES FOR CHAPTER 1 
 

EXERCISE 1: For each of the following statements 

determine whether it is TRUE or FALSE. 

 

(1) One of the group axioms is the commutative law: 

a * b = b * a for all a, b. 

 

(2) A group is a set that is closed under an associative 

binary operation that has an identity and where every 

element has an inverse. 

 

(3) If A, B, C are the three rotations in the Dutch Wife’s 

Mattress Problem (see §1.2) then ABC = I. 

 

(4) If A, B are the rotations described in §1.3 then 

(AB)2 = I. 

 

(5) There are exactly 5 solutions to the equation x2 = I in 

the dihedral group D8. 

 

(6) The sequence of operations HRHHRRR is a letter-

facing sequence (see §1.4) – that is, if letters are scanned 

in the top-right-hand corner and are rotated according to 

this sequence then all letters with a stamp in one of the 8 

corners will have that stamp detected. 
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(7) If you begin by facing North with your gun unloaded, 

in the game Galois Says (see §1.6) and obey the following 

sequence of instructions LOAD,  LEFT,  LOAD,  RIGHT 

you will end up facing South with your gun unloaded. 

 

(8) Swapping ,  leaves the expression E = ( − )2 

unchanged. 

 

(9) Galois died of old age. 

 

(10) Abstraction is a powerful tool in mathematics. 
 

EXERCISE 2: If A, B, C represent the three mattress-

turning operations and the sequence ABACACBABAA is 

carried out month by month over an 11 month period, 

what operation should be carried out in the 12th month in 

order for the mattress to return to its original position at 

the end of the 12 months? 

 

EXERCISE 3: Show that if the sequence of operations 

ABACACBABAAB is carried out, month by month over 

a twelve month period, the mattress will be in each of its 

four possible positions for exactly 3 of the 12 months. 

 

EXERCISE 4: Suppose you have an equilateral triangle 

and A represents the rotation through 120 in an 

anticlockwise direction about the centre of the triangle, 

and suppose that B represents a 180 rotation about an 
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axis of symmetry. Prepare a multiplication table for the 

group generated by A, B. 

 

EXERCISE 5: If you start playing Galois Says facing 

West with the gun loaded and you are told LEFT, which 

direction should you now be facing? 

 

EXERCISE 6: In playing Galois Says, show that: 

LEFT  LOAD  RIGHT = RIGHT  LOAD  LEFT. 

 

EXERCISE 7: In how many different ways can you write 

the algebraic expression abc + def so that its value is 

unchanged. (For example, fde + bac has the same value 

as abc + def even though it looks different. Include the 

expression abc + def itself.) 

 

EXERCISE 8: Show that the operation:  → ,  → , 

 → ,  →  leaves the value of the expression  +  

unchanged while the operation: 

 → ,  → ,  → ,  →  

does not. 

 

EXERCISE 9: Consider the set G = {A, B, C, D} under 

the binary operation given by the following table: 

* I A B C 

I I A B C 

A A B C A 

B B C A I 

C C I I B 
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Calculate two different values of A4, by putting 

parentheses into A * A * A * A in different ways. So the 

associative law does not hold. Which of the other 3 group 

axioms hold for this system? Is this an abelian group?  

 

SOLUTIONS FOR CHAPTER 1 
 

EXERCISE 1: 

(1) is FALSE – the commutative law only holds in abelian 

groups; 

(2) TRUE; 

(3) TRUE, since AB = C and C2 = I; 

(4) TRUE; 

(5) FALSE – there are 6 solutions: I, A2, B, AB, A2B and 

A3B 

(6) FALSE, because HH = I; 

(7) TRUE; 

(8) TRUE; 

(9) FALSE – he was killed in a duel at 20; 

(10) TRUE 

 

EXERCISE 2: Since the commutative law xy = yx holds 

in the mattress group we can simplify ABACACBABAA 

to A6B3C2 = B, so an extra factor of B is required to make 

the product the identity. 

 

EXERCISE 3: The successive products after 1, 2, 3, … 

months are: 

A,  AB = C,    ABA = CA = B,    ABAC = BC = A,  etc. 
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These products are A, C, B, A, I, C, A, I, B, C, B, I. 

Each of these represents one of the four positions of the 

mattress and each occurs 3 times. 

 

EXERCISE 4: 

 I A A2 B AB A2B 

I I A A2 B AB A2B 

A A A2 I AB A2B B 

A2 A2 I A A2B B AB 

B B A2B AB I A2 A 

AB AB B A2B A I A2 

A2B A2B AB B A2 A I 

 

EXERCISE 5: NORTH (that is you turn right because 

the gun is loaded). 

 

EXERCISE 6: If you start facing North, for example, 

with the gun unloaded then LEFT  LOAD  RIGHT and 

RIGHT  LOAD  LEFT both result in you facing South 

with the gun unloaded. There’s a difference in how you 

got there (in one case you’ll have made two left turns and 

in the other you’ll have made two right turns) but we’re 

only taking into account the final position, which is the 

same in each case. 

 

EXERCISE 7: There are 6 ways of arranging a, b, c and 

for each of these there are 6 ways of arranging d, e, f. So 

in all there are 36 ways of writing abc + def in such a way 

that the first term is equivalent to abc. 
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 But the two terms can be swapped, giving twice as 

many possibilities altogether, that is, there are 72 ways of 

writing abc + def. 

 

EXERCISE 8: The first operation changes  +  into 

 +  which algebraically is equivalent to  + . The 

second operation changes  +  into  +  which is 

equivalent to  +  but not the original expression  

+ . 

 

EXERCISE 9: (A * A) * (A * A) = B * B = A while 

((A * A) * A) = (B * A) * A = C * A = I. 

(All the other ways of inserting parentheses also give I. 

This system satisfies the Closure Law, the Identity Law 

and the Inverse Law. It even satisfies the Commutative 

Law. But, without the Associative Law it is not a group. 
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